Adaptive Long-Term Coding of LSF Parameters Trajectories for Large-Delay/Very- to Ultra-Low Bit-Rate Speech Coding

نویسنده

  • Laurent Girin
چکیده

This paper presents a model-based method for coding the LSF parameters of LPC speech coders on a “long-term” basis, that is, beyond the usual 20–30 ms frame duration. The objective is to provide efficient LSF quantization for a speech coder with large delay but veryto ultra-low bit-rate (i.e., below 1 kb/s). To do this, speech is first segmented into voiced/unvoiced segments. A Discrete Cosine model of the time trajectory of the LSF vectors is then applied to each segment to capture the LSF interframe correlation over the whole segment. Bi-directional transformation from the model coefficients to a reduced set of LSF vectors enables both efficient “sparse” coding (using here multistage vector quantizers) and the generation of interpolated LSF vectors at the decoder. The proposed method provides up to 50% gain in bit-rate over frame-by-frame quantization while preserving signal quality and competes favorably with 2D-transform coding for the lower range of tested bit rates. Moreover, the implicit time-interpolation nature of the long-term coding process provides this technique a high potential for use in speech synthesis systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Coding of Speech LSF Parameters Using Karhunen-Loeve Transform

In this paper, the use of optimal KarhunenLoeve (KL) transform for quantization of speech line spectrum frequency (LSF) coefficients is studied. Both scalar quantizer (SQ) and vector quantizer (VQ) schemes are developed to encode efficiently the transform parameters after operating one or two-dimensional KL transform. Furthermore, the SQ schemes are also combined with entropy coding by using Hu...

متن کامل

Optimized estimation of spectral parameters for the coding of noisy speech

In this contribution we optimize a speech enhancement preprocessor such that a distortion measure in the Line Spectral Frequency (LSF) domain is minimized. We can thus improve the estimation of spectral parameters of a speech coder when the input signal to the coder is a noisy speech signal. The optimization aims at the maximum noise reduction of the enhancement preprocessor. The average maximu...

متن کامل

Intra-frame and Inter-frame Coding of Speech LSF Parameters Using A Trellis Structure

Linear Predictive Coding (LPC) parameters are widely used in various speech processing applications for representation of the spectral envelope of speech. Low bit-rate speech coding applications, require accurate quantization of these parameters using as few bits as possible. Line Spectral Frequency (LSF) representation is the most widely accepted representation of LPC parameters for quantizati...

متن کامل

Classified Vector Quantization of Lpc Parameters

To achieve high coding efficiency, modern speech coders adopt hybrid coding approaches, which utilize different coding mechanisms for various classified speech segments. With known voiced/unvoiced detection, in this paper, a classified LPC quantization (CLPQ) scheme is presented to effectively encode line spectral frequencies (LSF). The proposed CLPQ scheme improves the performance of the class...

متن کامل

Multi-mode matrix quantizer for low bit rate LSF quantization

In this paper, we introduce a novel method for quantization of line spectral frequencies (LSF) converted from mth order linear prediction coefficients. In the proposed method, the interframe correlation of LSFs is exploited using matrix quantization where N consecutive frames are quantized as one m-by-N matrix. The voicing-based multi-mode operation reduces the bit rate by taking advantage of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Audio, Speech and Music Processing

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010